Directions (Q. Nos. 1-5) : In the following questions two equations numbered I and II are given. You have to solve both the equations and— Give answer (1) if x > y (2) if x ≥≥ y (3) if x < y (4) if x ≤≤ y (5) if x = y or the relationship cannot be established
Q.Q. I. √1225x+√4900=01225x+4900=0 II. (81)14y+(343)13=0(81)41y+(343)31=0
A. x>yx>y
B. x<yx<y
C. x≥yx≥y
D. x≤yx≤y
2 .
I. 18x2x218 + 6x2x26 - 12x2x212 = 8x2x28 II. y3y3 + 9.68 + 5.64 = 16.95
A. x>yx>y
B. x≥yx≥y
C. x≤yx≤y
D. x = y or no relation can be established between ‘x’ and ‘y’.
3 .
I. (2)5+(11)366(2)5+(11)3 = x3x3 II. 4y3=−(589÷4)+5y34y3=−(589÷4)+5y3
I. (x75÷9)(x57÷9) = 169÷y35169÷y53 II. y14×y14×7y41×y41×7 = 273÷y12273÷y21
A. x>yx>y
B. x≥yx≥y
C. x<yx<y
D. x≤yx≤y
6 .
Directions (Q. 6 - 10): Two equations (I) and (II) are given in each question. On the basis of these equations you have to decide the relation between x and y and give answer
(1) if x > y (2) if x < y (3) if x ≥≥ y (4) if x ≤≤ y (5) if x = y, or no relation can be established between x and y.
Q.Q. I. x = 4√240142401 II.2y22y2 - 9y - 56 = 0
A. x>yx>y
B. x<yx<y
C. x≥yx≥y
D. x = y or no relation can be established between ‘x’ and ‘y’.
7 .
I. 5x25x2 + 3x - 14 = 0 II.2y22y2 - 9y + 10 = 0
A. x>yx>y
B. x<yx<y
C. x≥yx≥y
D. x≤yx≤y
8 .
I. 8x28x2 + 31x + 21 = 0 II. 5y25y2 + 11y - 36 = 0
A. x>yx>y
B. x<yx<y
C. x≤yx≤y
D. x = y or no relation can be established between ‘x’ and ‘y’.
9 .
I. 3x - y = 12 II. y = √10891089
A. x>yx>y
B. x<yx<y
C. x≥yx≥y
D. x≤yx≤y
10 .
I. 15x215x2 + 68x + 77 = 0 II. 3y23y2 + 29y + 68 = 0
A. x>yx>y
B. x<yx<y
C. x≥yx≥y
D. x≤yx≤y
Answers & Solutions
1 .
Answer : Option A
Explanation :
I. √1225x+√4900=01225x+4900=0 35x + 70 = 0 x = - 70353570 = -2
II. 3y + 7 = 0 y = - 7337
x>yx>y
2 .
Answer : Option D
Explanation :
I. 18+6x−12x2x218+6x−12 = 8x2x28 or , x = 1331 = 0.333
II. y2y2 = 16.95 - 9.68 - 5.64 = 1.63 y = ±1.277
3 .
Answer : Option A
Explanation :
I. x3=x3=32+13316632+1331 = 1363661363 II. 5y3−4y3=5y3−4y3=58944589 or y3=y3=58944589
No comments:
Post a Comment